Sentiment Analysis Regarding Kanjuruan Stadium Polemics Based on Public Opinion Through Twitter Social Media with SVM Classifier Method
Keywords:
Twitter, Vader, Naïve Bayes, Svm, Rapid minner, Kanjuruhan Stadium
Abstract
Football fans are individuals who promote, motivate, and inspire football. Players of football clubs have both positive and negative fanaticism in both the real world and social media, especially on Twitter. Twitter is one of the communication media. Attracting people worldwide, Twitter saw a record increase in global users, with 313 million monthly active users in 2016 alone; the majority accessed Twitter through mobile devices, accounting for 82 percent of users. Due to the multitude of users tweeting, the latest news and comments become significant worldwide. What happens becomes the main topic, and comments received from many users trigger trending topics on Twitter. This research aims to develop a classification model to predict whether tweets from stadium events are positive or negative from fan perspectives. The classification model is based on a Twitter dataset, and sentiment analysis of tweets was conducted using the Support Vector Machine (SVM) algorithm. The next step involved preprocessing, including case-folding, cleansing, translation to English, and sentiment labeling using VADER. Subsequently, in the preprocessing step 2, tokenization, stopwords, and stemming were applied. For modeling, classic algorithms such as Naïve Bayes and Support Vector Machine were used. The highest accuracy, 87.77%, was achieved using the Support Vector Machine (SVM) algorithm.
Downloads
References
Abimanyu, D. (2022). Analisis Sentimen Akun Twitter Apex Legends Menggunakan VADER. In Jurnal Nasional Komputasi dan Teknologi Informasi (Vol. 5, Issue 03). Jurnal Nasional Komputasi dan Teknologi Informasi.
Abimanyu, D., Budianita, E., Cynthia, E. P., Yanto, F., & Yuasra. (2022). Analisis Sentimen Akun Twitter Apex Legends Menggunakan VADER. Jurnal Nasional Komputasi Dan Teknologi Informasi, 5(3), 423–431.
Alfajri, I., Aritonang, D. D., Sarwidaningrum, I., Werdiono, D., Irawati, D., & Hidayat, A. R. (2022). Polda Jatim Bantah Kandungan Gas Air Mata Mematikan.https://www.kompas.id/baca/investigasi/2022/11/10/polri-bantah-kandungan-zat-air-mata-mematikan.
Ariandi, R., Pratiwi, O. N., & Fa’rifah, R. Y. (2023). Klasifikasi Soal Sejarah Tingkat SMA Berdasarkan Level Kognitif Revised Bloom’s Taxonomy Menggunakan Algoritma K-Nearest Neighbour Manhattan. EProceedings of Engineering, 10(2).
Astiningrum, M., Haniah, M., & Pradana, Y. rahmat yoga. (2020). Analisis Sentimen Tentang Opini Terhadap Performa Timnas Sepak Bola Indonesia Pada Twitter. Seminar Informatika Aplikatif Polinema (Siap), 35— 39.
Bhakuni, M., Kumar, K., Iwendi, C., Singh, A., & others. (2022). Evolution and Evaluation: Sarcasm Analysis for Twitter Data Using Sentiment Analysis. Journal of Sensors, 2022.
Chatfield, C. (1995). Model uncertainty, data mining and statistical inference. Journal of the Royal Statistical Society Series A: Statistics in Society, 158(3), 419–444.
Craig, D., & Cunningham, S. (2019). Social media entertainment: The new intersection of Hollywood and Silicon Valley. NYU Press.
Febrianto, V., & S, R. (2022). Death count in Kanjuruhan tragedy climbs to 135. ANTARA News. https://en.antaranews.com/news/256465/death-count-in-kanjuruhan-tragedy-climbs-to-135
Garc’ia, S., Luengo, J., & Herrera, F. (2015). Data preprocessing in data mining (Vol. 72). Springer.
Hasanah, M. A., Soim, S., & Handayani, A. S. (2021). Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir. Journal of Applied Informatics and Computing, 5(2), 103–108. https://doi.org/10.30871/jaic.v5i2.3200
Hasanah, M. A., Soim, S., Handayani, A. S., & others. (2021). Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir. In Journal of Applied Informatics and Computing (Vol. 5, Issue 2).
Iskandar, A., Fahlepi Tuasamu, M. R., Syamsu, S., Mansyur, M., Listyorini, T., Sallu, S., Supriyono, S., Saddhono, K., Napitupulu, D., & Rahim, R. (2018). Web based testing application security system using semantic comparison method. IOP Conference Series: Materials Science and Engineering, 420(1). https://doi.org/10.1088/1757-899X/420/1/012122
Iskandar, A., Rahim, R., Matturungan, H., & others. (2022). Web-based STMIK AKBA Student Attendance Information System by Making QR Codes an Auxiliary Medium. Ceddi Journal of Information System and Technology (JST), 1(2), 24–29. https://doi.org/https://doi.org/10.56134/jst.v1i2.22
Ismail, H. C. (2022). Tragedi Kanjuruhan, Polri Akui Gunakan Gas Air Mata Kedaluwarsa. Tempo.Co. https://nasional.tempo.co/read/1643703/tragedi-kanjuruhan-polri-akui-gunakan-gas-air-mata-kedaluwarsa
Iswinarno, C. (2022). BRIN Periksa Gas Air Mata yang Picu Peristiwa Berdarah Tragedi Kanjuruhan. Suara.Com. https://www.suara.com/news/2022/10/14/183417/brin-periksa-gas-air-mata-yang-picu-peristiwa-berdarah-tragedi-kanjuruhan
Kruchten, P. (2004). The rational unified process: an introduction. Addison-Wesley Professional.
Mariam, M. (2023). Application of Customer Relationship Management in Maintaining Customer Loyalty (Case Study Hotel Melati). Ceddi Journal of Information System and Technology (JST), 2(1), 1–8. https://doi.org/https://doi.org/10.56134/jst.v2i1.31
Munawar, Z., Muliantara, A., Kmurawak, R. M. B., Reba, F., Sroyer, A., Sukmawan, D., Rahman, A., Insany, G. P., Mandowen, S. A., Toyib, W., & others. (2023). Big Data Analytics: Konsep, Implementasi, dan Aplikasi Terkini. Kaizen Media Publishing.
Mustaqim, T., Umam, K., & Muslim, M. A. (2020). Twitter text mining for sentiment analysis on government’s response to forest fires with vader lexicon polarity detection and k-nearest neighbor algorithm. In Conference Series (Vol. 1567, Issue 3).
Prasatya, R. (2022). Tok! PSSI Putuskan Secepatnya Gelar KLB. Detikcom. https://sport.detik.com/sepakbola/liga-indonesia/d-6375792/tok-pssi-putuskan-secepatnya-gelar-klb
Pyle, D. (1999). Data preparation for data mining. morgan kaufmann.
Sabariah1, M. K., Adam Mukharil Bachtiar2, Dharmayanti3, D., & Perdana4, I. (2021). BUSINESS DAN DATA UNDERSTANDING DALAM RANGKA PEMBENTUKAN RANGKA MENINGKATKAN LABA PENJUALAN MENGGUNAKAN METODE Jurnal Ilmiah Komputer dan Informatika ( KOMPUTA ) BUSINESS DAN DATA UNDERSTANDING DALAM RANGKA PEMBENTUKAN MODEL TATA LETAK DAN TATA RUANG PASA. January. https://doi.org/10.34010/komputa.v1i2.61
Safitri, A. R., & Muslim, M. A. (2020). Improved accuracy of naive bayes classifier for determination of customer churn uses smote and genetic algorithms. In Journal of Soft Computing Exploration (Vol. 1, Issue 1).
Sari, E. Y., Wierfi, A. D., & Setyanto, A. (2019). Sentiment Analysis of Customer Satisfaction on Transportation Network Company Using Naive Bayes Classifier. 2019 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM), 1–6.
Silvia. (2022, October 11). Komnas HAM Sebut Gas Air Mata Jadi Penyebab Utama Tragedi Kanjuruhan. DetikNews. https://news.detik.com/berita/d-6342591/komnas-ham-sebut-gas-air-mata-jadi-penyebab-utama-tragedi-kanjuruhan
Suryandari, N., Giovani, D., & Madura, U. T. (2022). EDUKATIF : JURNAL ILMU PENDIDIKAN. 4(3), 4154–4160.
Suwiknyo, E. (2022). Tim Pencari Fakta Serahkan Sampel Gas Air Mata Kedaluwarsa ke BRIN. Bisnis.Com. https://kabar24.bisnis.com/read/20221010/16/1586109/tim-pencari-fakta-serahkan-sampel-gas-air-mata-kedaluwarsa-ke-brin
Suyitno, P. P. W., Indrajit, R. E., & Fauzi, M. (2017). PENERAPAN DATA MINING DALAM MENANGANI KEMACETAN DI JAKARTA Popy. Ikraith-Informatika, 1(2), 53–60.
Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-based methods for sentiment analysis. In Computational linguistics (Vol. 37, Issue 2). MIT Press One Rogers Street, Cambridge, MA 02142-1209, USA journals-info~….
Valle-Cruz, D., López-Chau, A., & Sandoval-Almazán, R. (2020). Impression analysis of trending topics in Twitter with classification algorithms. Proceedings of the 13th International Conference on Theory and Practice of Electronic Governance, 430–441.
Wibawa, A. P., Guntur, M., Purnama, A., Akbar, M. F., & Dwiyanto, F. A. (2018). Metode-metode Klasifikasi. Prosiding Seminar Ilmu Komputer Dan Teknologi Informasi, 3(1).
Wijanarto, W., Sari, A. P., & Rohmani, A. (2020). Tuning Model Analisis Sentimen Tweeter Sepakbola Pada Dataset Kecil dan Seimbang. JOINS (Journal of Information System), 5(1), 44–61. https://doi.org/10.33633/joins.v5i1.3275
Yahya, A. N. (2022). TGIPF Kanjuruhan: Sepatutnya Ketua Umum PSSI dan Jajaran Komite Eksekutif Mengundurkan Diri. Kompas.Com. https://nasional.kompas.com/read/2022/10/14/15573851/tgipf-kanjuruhan-sepatutnya-ketua-umum-pssi-dan-jajaran-komite-eksekutif
Published
How to Cite
Issue
Section
Copyright (c) 2023 Ghama Wellyandi, Achmad Bayhaqy Bayhaqy, Chandra, Efit Afandi, Rimah Abu Achmed

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.