Forecasting of Flood in the Non-Tidal River of Northern Regions of Bangladesh Using Machine Learning-Based Approach

Authors

  • Md Khalid Hasan Hajee Mohammad Danesh Science and Technology University
  • Md Mofizul Islam Hajee Mohammad Danesh Science and Technology University
  • Maisha Fahmida Hajee Mohammad Danesh Science and Technology University

Keywords:

River, Machine Learning Algorithm, Data Analysis, Model Development
doi https://doi.org/10.56134/jst.v3i1.69

Abstract

Floods are among the most devastating natural disasters, causing extensive damage to property and posing a threat to human lives. However, significant progress has been made in mitigating their impact through the development of effective early warning systems. Over the past two decades, advances in machine learning (ML) technology have played a crucial role in enhancing the predictive capabilities of these systems. A recent study focused on predicting floods in non-tidal rivers by proposing various machine-learning models. The research findings indicate that the Random Forest algorithm emerges as the most effective, offering an accuracy of 87% with high precision, recall, and F1 scores, using an 80:20 training and testing data ratio. These findings provide valuable insights for hydrologists and make a significant contribution to flood forecasting and mitigation efforts. The study has significant implications for flood understanding and management, offering a better understanding of machine learning model performance in predicting floods in non-tidal rivers. This research provides a solid foundation for the development of more efficient early warning systems. The information gleaned from this study can be utilized by hydrologists, climate scientists, and other related practitioners to develop more accurate and reliable forecasting strategies in the face of flood threats. Thus, this research is not only a valuable scientific contribution but also a practical tool for future flood disaster risk mitigation efforts.

Downloads

Download data is not yet available.

References

Adamowski, J., Fung Chan, H., Prasher, S. O., Ozga-Zielinski, B., & Sliusarieva, A. (2012). Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada. Water Resources Research, 48(1). https://doi.org/https://doi.org/10.1029/2010WR009945

Alam, S., Jahan, S., & Noor, F. (2022). The surface water system, flood and water resources management of Bangladesh. Bangladesh Geosciences and Resources Potential, 467–546.

Ali, M. H., Bhattacharya, B., Islam, A., Islam, G. M. T., Hossain, M. S., & Khan, A. S. (2019). Challenges for flood risk management in flood-prone Sirajganj region of Bangladesh. Journal of Flood Risk Management, 12(1), e12450. https://doi.org/https://doi.org/10.1111/jfr3.12450

Aziz, M. A., Moniruzzaman, M., Tripathi, A., Hossain, M. I., Ahmed, S., Rahaman, K. R., Rahman, F., & Ahmed, R. (2022). Delineating flood zones upon employing synthetic aperture data for the 2020 flood in Bangladesh. Earth Systems and Environment, 6(3), 733–743. https://doi.org/https://doi.org/10.1007/s41748-022-00295-0

Bates, P. D. (2022). Flood inundation prediction. Annual Review of Fluid Mechanics, 54, 287–315. https://doi.org/https://doi.org/10.1146/annurev-fluid-030121-113138

Baxter, C. (2018). Bangladesh: From a nation to a state. Routledge.

Becker, M., Papa, F., Karpytchev, M., Delebecque, C., Krien, Y., Khan, J. U., Ballu, V., Durand, F., Le Cozannet, G., Islam, A. K. M. S., & others. (2020). Water level changes, subsidence, and sea level rise in the Ganges Brahmaputra Meghna delta. Proceedings of the National Academy of Sciences, 117(4), 1867–1876. https://doi.org/https://doi.org/10.1073/pnas.1912921117

Bentivoglio, R., Isufi, E., Jonkman, S. N., & Taormina, R. (2022). Deep learning methods for flood mapping: a review of existing applications and future research directions. Hydrology and Earth System Sciences, 26(16), 4345–4378. https://doi.org/https://doi.org/10.5194/hess-26-4345-2022

Brunner, M. I., Slater, L., Tallaksen, L. M., & Clark, M. (2021). Challenges in modeling and predicting floods and droughts: A review. Wiley Interdisciplinary Reviews: Water, 8(3), e1520. https://doi.org/https://doi.org/10.1002/wat2.1520

Chakraborty, D., Mondal, K. P., Islam, S. T., & Roy, J. (2021). 2017 flash flood in Bangladesh: Lessons learnt. Disaster Resilience and Sustainability, 591–610. https://doi.org/https://doi.org/10.1016/B978-0-323-85195-4.00007-X

Cheng, C., Niu, W., Feng, Z., Shen, J., & Chau, K. (2015). Daily reservoir runoff forecasting method using artificial neural network based on quantum-behaved particle swarm optimization. Water, 7(8), 4232–4246. https://doi.org/https://doi.org/10.3390/w7084232

Chinchor, N. (1992). MUC-4 evaluation metrics in Proc. of the Fourth Message Understanding Conference. Morgan Kaufmann. https://doi.org/https://doi.org/10.3115/1072064.1072067

Dewan, T. H. (2015). Societal impacts and vulnerability to floods in Bangladesh and Nepal. Weather and Climate Extremes, 7, 36–42. https://doi.org/https://doi.org/10.1016/j.wace.2014.11.001

Erdianto, M. A. (2023). Perancangan Model Peramalan Jangka Pendek Harga Komoditas Pertanian di Indonesia Menggunakan Machine Learning. KLIK: Kajian Ilmiah Informatika Dan Komputer, 3(4), 338–346.

George, S. (2017). A third of Bangladesh under water as flood devastation widens. Cable News Network. Retrieved September, 22, 2017.

Green, J., Haigh, I. D., Quinn, N., Neal, J., Wahl, T., Wood, M., Eilander, D., de Ruiter, M., Ward, P., & Camus, P. (2024). A Comprehensive Review of Coastal Compound Flooding Literature. ArXiv Preprint ArXiv:2404.01321. https://doi.org/https://doi.org/10.5194/egusphere-egu24-1669

Guo, K., Guan, M., & Yu, D. (2021). Urban surface water flood modelling--a comprehensive review of current models and future challenges. Hydrology and Earth System Sciences, 25(5), 2843–2860. https://doi.org/https://doi.org/10.5194/hess-25-2843-2021

Hirpa, F. A., Hopson, T. M., De Groeve, T., Brakenridge, G. R., Gebremichael, M., & Restrepo, P. J. (2013). Upstream satellite remote sensing for river discharge forecasting: Application to major rivers in South Asia. Remote Sensing of Environment, 131, 140–151. https://doi.org/https://doi.org/10.1016/j.rse.2012.11.013

Hossain, M. S. (2024). Assessing the viability of the non-monetary flood insurance market for Bangladeshi smallholder farmers. Natural Hazards, 1–22. https://doi.org/https://doi.org/10.1007/s11069-024-06454-y

Khan, N. S., Roy, S. K., Talukdar, S., Billah, M., Iqbal, A., Zzaman, R. U., Chowdhury, A., Mahtab, S. B., & Mallick, J. (2024). Empowering real-time flood impact assessment through the integration of machine learning and Google Earth Engine: a comprehensive approach. Environmental Science and Pollution Research, 1–16. https://doi.org/https://doi.org/10.1007/s11356-024-33090-7

Kim, B., Sanders, B. F., Famiglietti, J. S., & Guinot, V. (2015). Urban flood modeling with porous shallow-water equations: A case study of model errors in the presence of anisotropic porosity. Journal of Hydrology, 523, 680–692. https://doi.org/https://doi.org/10.1016/j.jhydrol.2015.01.059

Kumar, A., Mondal, S., & Lal, P. (2022). Analysing frequent extreme flood incidences in Brahmaputra basin, South Asia. Plos One, 17(8), e0273384. https://doi.org/https://doi.org/10.1371/journal.pone.0273384

McGlade, J., Bankoff, G., Abrahams, J., Cooper-Knock, S. J., Cotecchia, F., Desanker, P., Erian, W., Gencer, E., Gibson, L., Girgin, S., & others. (2019). Global assessment report on disaster risk reduction 2019. UN Office for Disaster Risk Reduction.

Mondal, M. S. H., Murayama, T., & Nishikizawa, S. (2020). Assessing the flood risk of riverine households: A case study from the right bank of the Teesta River, Bangladesh. International Journal of Disaster Risk Reduction, 51, 101758. https://doi.org/https://doi.org/10.1016/j.ijdrr.2020.101758

Mosavi, A., Ozturk, P., & Chau, K. (2018). Flood prediction using machine learning models: Literature review. Water, 10(11), 1536. https://doi.org/https://doi.org/10.3390/w10111536

Munawar, H. S., Hammad, A. W. A., & Waller, S. T. (2022). Remote sensing methods for flood prediction: A review. Sensors, 22(3), 960. https://doi.org/https://doi.org/10.3390/s22030960

Palash, W., Akanda, A. S., & Islam, S. (2020). The record 2017 flood in South Asia: State of prediction and performance of a data-driven requisitely simple forecast model. Journal of Hydrology, 589, 125190. https://doi.org/https://doi.org/10.1016/j.jhydrol.2020.125190

Price, S. (2020). Floods compound COVID-19 emergency. Green Left Weekly, 1276, 16.

Puttinaovarat, S., & Horkaew, P. (2020). Flood forecasting system based on integrated big and crowdsource data by using machine learning techniques. IEEE Access, 8, 5885–5905. https://doi.org/https://doi.org/10.1109/ACCESS.2019.2963819

Rahman, M. A., Mondal, M. N., Hannan, M. A., & Habib, K. A. (2015). Present status of fish biodiversity in Talma River at Northern Part of Bangladesh. International Journal of Fisheries and Aquatic Studies, 3(1), 341–348.

Rasel, R. I., Uddin, M. N., Islam, F., & Haroon, A. (2018). Application of deep neural network for predicting river tide level. International Conference on Innovations in Science, Engineering and Technology (ICISET), 311–316. https://doi.org/https://doi.org/10.1109/ICISET.2018.8745593

Riza, O. S., & Nuryadi, A. (2023). Bibliometric Study: Rainfall Classification-Prediction using Machine Learning Methods. Digital Zone: Jurnal Teknologi Informasi Dan Komunikasi, 14(2), 206–218. https://doi.org/https://doi.org/10.31849/digitalzone.v14i2.16618

Roy, B., Islam, A. K. M. S., Islam, G. M. T., Khan, M. J. U., Bhattacharya, B., Ali, M. H., Khan, A. S., Hossain, M. S., Sarker, G. C., & Pieu, N. M. (2019). Frequency analysis of flash floods for establishing new danger levels for the rivers in the northeast Haor region of Bangladesh. Journal of Hydrologic Engineering, 24(4), 5019004.

Sarkar, S. K., Ansar, S. Bin, Ekram, K. M. M., Khan, M. H., Talukdar, S., Naikoo, M. W., Islam, A. R. T., Rahman, A., & Mosavi, A. (2022). Developing robust flood susceptibility model with small numbers of parameters in highly fertile regions of Northwest Bangladesh for sustainable flood and agriculture management. Sustainability, 14(7), 3982. https://doi.org/https://doi.org/10.3390/su14073982

Siddique, H. (2017). South Asia floods kill 1,200 and shut 1.8 million children out of school. The Guardian, 31.

Speight, L. J., Cranston, M. D., White, C. J., & Kelly, L. (2021). Operational and emerging capabilities for surface water flood forecasting. Wiley Interdisciplinary Reviews: Water, 8(3), e1517. https://doi.org/https://doi.org/10.1002/wat2.1517

Tiggeloven, T., Couasnon, A., van Straaten, C., Muis, S., & Ward, P. J. (2021). Exploring deep learning capabilities for surge predictions in coastal areas. Scientific Reports, 11(1), 17224. https://doi.org/https://doi.org/10.1038/s41598-021-96674-0

Umgiesser, G., Bajo, M., Ferrarin, C., Cucco, A., Lionello, P., Zanchettin, D., Papa, A., Tosoni, A., Ferla, M., Coraci, E., & others. (2020). The prediction of floods in Venice: methods, models and uncertainty. Natural Hazards and Earth System Sciences Discussions, 2020, 1–47. https://doi.org/https://doi.org/10.5194/nhess-2020-361

Valipour, M., Banihabib, M. E., & Behbahani, S. M. R. (2012). Parameters estimate of autoregressive moving average and autoregressive integrated moving average models and compare their ability for inflow forecasting. J Math Stat, 8(3), 330–338. https://doi.org/https://doi.org/10.3844/jmssp.2012.330.338

Wheater, H. S. (2002). Progress in and prospects for fluvial flood modelling. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 360(1796), 1409–1431. https://doi.org/https://doi.org/10.1098/rsta.2002.1007

Zahura, F. T., Goodall, J. L., Sadler, J. M., Shen, Y., Morsy, M. M., & Behl, M. (2020). Training machine learning surrogate models from a high-fidelity physics-based model: Application for real-time street-scale flood prediction in an urban coastal community. Water Resources Research, 56(10), e2019WR027038.

Zheng, Z., Wang, D., Gong, F., He, X., & Bai, Y. (2021). A Study on the Flux of Total Suspended Matter in the Padma River in Bangladesh Based on Remote-Sensing Data. Water, 13(17), 2373. https://doi.org/https://doi.org/10.3390/w13172373

Published

2024-04-30
CITATION
DOI: 10.56134/jst.v3i1.69
Published: 2024-04-30

How to Cite

Hasan, M. K., Islam, M. M., & Fahmida, M. (2024). Forecasting of Flood in the Non-Tidal River of Northern Regions of Bangladesh Using Machine Learning-Based Approach. Ceddi Journal of Information System and Technology (JST), 3(1), 26–37. https://doi.org/10.56134/jst.v3i1.69

Issue

Section

Articles