Decision Support System for Specialization Selection Based on Student Interests and Abilities Using the Weighted Product Method

Lusiana Wulansari¹, Astri², Nur Azizah Muchtar³

¹Manajemen Pendidikan, Universitas Indraprasta PGRI Jakarta, Jakarta, Indonesia
²Department of Information Technology Education, Institute of Technology and Business Nobel Indonesia, Makassar, Indonesia
³Department of Informatics, Universitas Teknologi Aksa Makassar, Makassar, Indonesia

Abstract

This research was developed to provide a more efficient and accurate solution in assisting the process of selecting student specializations. This research aims to help schools determine whether or not specializations are appropriate for students. The method used in this research is the Weighted Product (WP) Method. This method was chosen because it is capable of solving multi-criteria problems and providing specialization recommendations based on accurate criteria weight calculations. Next, the data that has been collected will be entered into a decision support system that has been created using the Weighted Product method. This Decision Support System will calculate the weight scores and criteria that have been determined. It is hoped that the results of this research can help schools provide specialization options that suit students' interests and abilities. The application test results and questionnaire test results are categorized as feasible based on the research success table and implementation. This decision support system application shows that this application runs well through functional testing and produces the expected output.

Keywords: Queuing Applications, Client Server, SDLC Prototype Model.

Received: 15 November 2022 Revised: 29 August 2023 Accepted: 15 December 2023

Introduction

The choice of specialization in high school education is currently experiencing significant changes in terms of the curriculum (Aryanto et al., 2022). Previously, specialization selection was carried out when new students entered school or at the registration stage for new students (SMAN1Tumpang, 2019). However, with the change from the 2013 curriculum to the independent curriculum, the specialization selection process has also changed (Fitri, 2021). In the independent curriculum, selecting specializations is no longer carried out at the start of high school but is moved to the stage where students will enter class XI. This aims to give students more time to consider their interests, talents, and potential before choosing a suitable specialization (Solichin, 2016). This change benefits students, as they have more opportunities to become familiar with various subjects and get a clearer picture of their interests and abilities as they progress through high school (Syaukani, 2005). This change also requires a more active role from schools and teachers in providing information, guidance, and counseling to students to help them select their specialization.

Choosing the right specialization is crucial in planning a student's career (Sobari, 2019). When students choose a specialization that suits their desires, it can help them achieve their best potential, and motivate them in the learning process. On the other hand, students who choose their specialization randomly due to pressure from other people such as friends, parents, or because they don't like the subject teacher, will have a different learning experience. The process of selecting student specializations is currently still done manually by comparing students' scores. However, in carrying out this process obstacles often arise. One of them is the increase in the number of students from year to year, which makes the process of determining specialization more complicated. Apart from that, many criteria must be considered in determining a student's specialization (Silitonga et al., 2023). These obstacles can hurt the calculation process so that the results obtained are not objective. This can result in an imbalance in the distribution of students to various specializations, so that some students may not be suited to their chosen specialization or unable to optimize their potential. In facing these obstacles, it is necessary to consider adopting a more efficient and objective method or system in the process of selecting student specializations.

*Corresponding author.
E-mail address: lusianawulansari@gmail.com (Lusiana Wulansari)

Ceddi Journal of Education is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.
Research on specialization selection has also been carried out (Iskandar, Kartowagiran, et al., 2023) using the Weighted Product method. In this research, researchers focused on selecting specializations for the Mathematics and Natural Sciences (MIA) department and the Social Sciences (IIS) department (Nur et al., 2020). The criteria used in this research include National Examination (UN) scores, psychological tests, non-academic achievements, and student interests (Awaliyah et al., 2020; Nadmilail et al., 2022). The results of this research show that the system developed is able to provide accurate and fast information regarding specialization at SMA Negeri 1 Purwodadi Grobogan. The Weighted Product method is used to combine the weight or importance of each criterion used in selecting specializations (Burstein & Holsapple, 2008; Rifqi & others, 2020). In this way, students can obtain appropriate specialization recommendations based on their assessment of these criteria.

As for other research conducted by (I. M. Siregar, 2023) with the title "Decision Support System Determining The Best Customers Using The Weighted Product Method". This research overcomes the problems in the process of determining majors which is done manually, takes a lot of time, is ineffective, and often involves errors (Hermawan, 2021). To overcome this problem, the researchers designed, built, and implemented a system designed using the Weighted Product method. This method is used to make it easier to select a major by giving weight to each relevant criterion (Sari, 2018).

In the context of SMA Negeri 1 Pangkep, it is necessary to transition from manual methods to digital systems in the majoring process. Manual methods that are less practical, ineffective, and prone to errors can have an impact on students' choice of specialization and their learning process (Ariebenow & Widayanti, 2017). Therefore, as a solution to this problem, the author designed a specialization selection application (Afriyani & Rohman, 2022). This application aims to provide a more efficient and accurate solution in the specialization selection process for students (Anamisa & Mufarroha, 2022). With this application, students can be assured of easy and efficient access to the necessary information, as well as selecting specializations based on relevant criteria (Gusti et al., 2016; Solichin, 2016). Using applications in the specialization selection process will provide benefits, such as reducing the risk of calculation errors, speeding up the data processing process, and providing more objective specialization recommendations based on the data that has been collected (Muslihudin & others, 2016; Sarwandi et al., 2023).

In this way, students will get more accurate specialization results according to their interests, talents, and potential (Rizka, 2023; Yudha, 2023). By designing a specialization selection application, it is hoped that the specialization selection process at SMA Negeri 1 Pangkep can be more efficient, practical, and can support students in making the right decisions regarding their specialization (Gede Iwan Sudipa et al., 2023). With this research, the author hopes to provide an effective and practical solution in the process of selecting student specializations at SMA Negeri 1 Pangkep, as well as helping students determine the right specialization according to their abilities and interests.

Method

This method section explains how research on the Decision Support System for Specialization Selection Based on Student Interests and Abilities Using the Weighted Product Method was carried out, namely:

1. **Data Collection Stage**
 The data collection methods used in this research are:
 a. **Interview**
 An interview is an activity of asking questions and answering or asking questions directly to the Principal, teachers or staff of SMA Negeri 1 Pangkep to obtain accurate and reliable information (N. S. S. Siregar, 2002).
 b. **Observation**
 Observation is the activity of observing directly by conducting inspections and recording directly at the Pangkep 1 Public High School to receive the necessary information.
 c. **Literature review**
 Literature study is a step in research that involves exploration, collection, and analysis of literature or library sources related to the research topic (Adlini et al., 2022). For example, searching for and reading various types of literature sources, including scientific journals, books, articles, theses, and reports that are relevant to the research topic.
2. Requirements Analysis Techniques
 Needs analysis is a process carried out to identify, understand and define needs or conditions that must be met by a system or solution in selecting specializations that suit students' talents and abilities.
 a. Software Requirements
 1) Windows 10 OS
 2) Google chrome
 3) XAMPP
 4) VsCode
 b. Hardware Requirements
 1) Memory (RAM) 4GB / Hard disk 500 GB
 2) Processor with Intel (R) Celeron (R) CPUN3060@ 1.60GHz specifications

3. System Design Methods
 The essence of the goal of system design is to present an overview of the system design that will be used or developed, as well as gaining a better understanding of the flow of information and processes in the system (Iskandar, Fitriani, et al., 2023). This design uses a use case which describes two entities, namely admin and students, each process that will occur is explained in an activity diagram (Kurniawan, 2018).

 ![Use Case Diagram](image)

 Figure 1. Use Case Diagram

4. Class Diagrams
 Class diagrams are a type of diagram that is very useful in UML because they are able to clearly describe the layout of a particular system through modeling classes, operations, attributes and relationships between objects (Setiawan Rony, 2021). This class diagram illustrates the interactions between relations in the system.
Results and Discussion

Results

The results of research from the Decision Support System for Selecting Specializations Based on Student Interests and Abilities Using the Weighted Product Method are as follows:

1. Blackbox Texting Testing
 This testing is carried out with the aim of ensuring that the system as a whole can operate properly and provide the expected results regardless of its internal implementation (Kurniawan, 2018), appears in the Table 1.

 ![Figure 2. Class Diagram](image)

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Function</th>
<th>Outputs</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Login Page</td>
<td>Displays the username and password page</td>
<td>Bring up the login page by entering the user name and password.</td>
<td>Succeed</td>
</tr>
<tr>
<td>Admin Main Page</td>
<td>Displays the main admin page</td>
<td>Brings up a page containing a dashboard, criteria data, student data, assessment data, calculation results data, and admin data.</td>
<td>Succeed</td>
</tr>
<tr>
<td>Criteria Data Page</td>
<td>Displays the criteria data page</td>
<td>Brings up a table containing NISN, student name, class, gender, and description.</td>
<td>Succeed</td>
</tr>
<tr>
<td>Student Data Page</td>
<td>Displays the student data page</td>
<td>Displays a table containing the criteria code, criteria name, type, weight, sequence, scoring method and description.</td>
<td>Succeed</td>
</tr>
<tr>
<td>Assessment Data Page</td>
<td>Displays the assessment data page</td>
<td>Brings up a table containing the name and description.</td>
<td>Succeed</td>
</tr>
<tr>
<td>Calculation Results Data Page</td>
<td>Displays the calculation results data page</td>
<td>Brings up a table containing alternative results, class, S value, V value and information.</td>
<td>Succeed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Function</th>
<th>Outputs</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Home Page</td>
<td>Displays the user's main page</td>
<td>Brings up a page containing the dashboard, calculation data and admin data.</td>
<td>Succeed</td>
</tr>
<tr>
<td>Results Data Page</td>
<td>Displays the results data page</td>
<td>Displays a table containing NISN, student name, grades and specialization recommendations.</td>
<td>Succeed</td>
</tr>
<tr>
<td>Profile Data Page</td>
<td>Displays the profile data page</td>
<td>Displays a page containing profile data from the user.</td>
<td>Succeed</td>
</tr>
</tbody>
</table>
2. Implementation of the Weighted Product Method
 In testing this calculation, it will be carried out on alternative data and criteria that have been input by the user (Sahara et al., 2022), appears in the Table 2-5.

 a. Alternative Data

 Table 2. Alternative Data
<table>
<thead>
<tr>
<th>Code</th>
<th>Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>Riska</td>
</tr>
<tr>
<td>A02</td>
<td>Fera</td>
</tr>
<tr>
<td>A03</td>
<td>Hero</td>
</tr>
</tbody>
</table>

 b. Criterion Data

 Table 3. Criteria Data
<table>
<thead>
<tr>
<th>Criteria Code</th>
<th>Criterion Name</th>
<th>Type</th>
<th>Weight (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C01</td>
<td>Mathematics</td>
<td>10</td>
<td>0.1</td>
</tr>
<tr>
<td>C02</td>
<td>English</td>
<td>10</td>
<td>0.1</td>
</tr>
<tr>
<td>C03</td>
<td>ICT</td>
<td>10</td>
<td>0.1</td>
</tr>
<tr>
<td>C04</td>
<td>Economy</td>
<td>10</td>
<td>0.1</td>
</tr>
<tr>
<td>C05</td>
<td>Chemistry</td>
<td>9</td>
<td>0.09</td>
</tr>
<tr>
<td>C06</td>
<td>Indonesian</td>
<td>9</td>
<td>0.09</td>
</tr>
<tr>
<td>C07</td>
<td>Geographical</td>
<td>9</td>
<td>0.09</td>
</tr>
<tr>
<td>C08</td>
<td>Physics</td>
<td>6</td>
<td>0.06</td>
</tr>
<tr>
<td>C09</td>
<td>Arabic</td>
<td>6</td>
<td>0.06</td>
</tr>
<tr>
<td>C10</td>
<td>Sociology</td>
<td>6</td>
<td>0.06</td>
</tr>
<tr>
<td>C11</td>
<td>Biology</td>
<td>5</td>
<td>0.05</td>
</tr>
<tr>
<td>C12</td>
<td>German language</td>
<td>5</td>
<td>0.05</td>
</tr>
<tr>
<td>C13</td>
<td>Anthropology</td>
<td>5</td>
<td>0.05</td>
</tr>
</tbody>
</table>

 c. Criteria Assessment

 Table 4. Assessment Criteria
<table>
<thead>
<tr>
<th>Subject Values</th>
<th>Category</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>87-100</td>
<td>Very high</td>
<td>1</td>
</tr>
<tr>
<td>73-86</td>
<td>High enough</td>
<td>0.8</td>
</tr>
<tr>
<td>59-72</td>
<td>Tall</td>
<td>0.6</td>
</tr>
<tr>
<td>45-58</td>
<td>Fairly Low</td>
<td>0.4</td>
</tr>
<tr>
<td>31-44</td>
<td>Low</td>
<td>0.2</td>
</tr>
<tr>
<td><30</td>
<td>Very low</td>
<td>0</td>
</tr>
</tbody>
</table>

 d. Entering Criteria Values

 Table 5. Entering Criteria Values
<p>| Specialization Selection Decision Support |</p>
<table>
<thead>
<tr>
<th>AIR CONDITIONING</th>
<th>C01</th>
<th>C02</th>
<th>C03</th>
<th>C04</th>
<th>C05</th>
<th>C06</th>
<th>C07</th>
<th>C08</th>
<th>C09</th>
<th>C10</th>
<th>C11</th>
<th>C12</th>
<th>C13</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>74</td>
<td>60</td>
<td>77</td>
<td>80</td>
<td>57</td>
<td>79</td>
<td>88</td>
<td>74</td>
<td>60</td>
<td>77</td>
<td>80</td>
<td>57</td>
<td>79</td>
</tr>
<tr>
<td>A02</td>
<td>48</td>
<td>50</td>
<td>65</td>
<td>85</td>
<td>77</td>
<td>66</td>
<td>50</td>
<td>48</td>
<td>50</td>
<td>65</td>
<td>85</td>
<td>77</td>
<td>66</td>
</tr>
<tr>
<td>A03</td>
<td>77</td>
<td>92</td>
<td>80</td>
<td>77</td>
<td>85</td>
<td>76</td>
<td>80</td>
<td>77</td>
<td>92</td>
<td>80</td>
<td>77</td>
<td>85</td>
<td>76</td>
</tr>
</tbody>
</table>

 e. Weight Normalization

 \[W = \left(\frac{5}{5+5+5+5+4+4+4+3+3+3+3+2+2+2} \right) = 0.106 \]
 \[W_1 = \left(\frac{5}{5+5+5+5+4+4+4+3+3+3+2+2+2} \right) = 0.106 \]
 \[W_2 = \left(\frac{5}{5+5+5+5+4+4+4+3+3+3+2+2+2} \right) = 0.106 \]
 \[W_3 = \left(\frac{5}{5+5+5+5+4+4+4+3+3+3+2+2+2} \right) = 0.106 \]
 \[W_4 = \left(\frac{5}{5+5+5+5+4+4+4+3+3+3+2+2+2} \right) = 0.106 \]
The following image shows the login menu that can be used by admins and users to enter the system, by inputting the user name and password.

Figure 3. Login Menu
b. **Admin Main Menu**

The following image shows the main admin menu display if logged in as admin which displays the dashboard, criteria data, student data, assessment data, results data calculations, and admin data.

![Admin Main Menu](image)

Figure 4. Admin Main Menu

c. **Student Data Menu**

The following image is a menu display to display student data.

![Student Data Menu](image)

Figure 5. Student Data Menu

d. **Criteria Data Menu**

The following image is a display showing the criteria data.

![Criteria Data Menu](image)

Figure 6. Criteria Data Menu
e. **Assessment Data Menu**
 The following image is a display of the assessment data menu.

 ![Assessment Data Menu](image1)

 Figure 7. Assessment Data Menu

f. **Calculation Results Data Menu**
 The following image is a menu display to show the calculation results of the weighted product method.

 ![Calculation Results Data Menu](image2)

 Figure 8. Calculation Results Data Menu

g. **User Main Menu**
 The following image shows the dashboard menu display if logged in using a user account.

 ![User Main Menu](image3)

 Figure 9. Main User Menu
h. User Results Data Menu
The following image is a display that shows the final results of the calculation and to get department recommendations.

![User Results Data Menu](image1)

i. Profile Data Menu
The following image is a menu display that shows user profile data.

![Profile Data Menu](image2)

Discussion
Respondents' assessment regarding the decision support system for selecting specializations based on students' interests and abilities using the WP method with the available criteria. Each criterion is given weight according to its superiority. The questionnaire distributed included 30 respondents in Table 6.

<table>
<thead>
<tr>
<th>Question</th>
<th>SP (5)</th>
<th>P(4)</th>
<th>N(3)</th>
<th>TP (2)</th>
<th>STP (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the application easy to use?</td>
<td>22</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Does the application output accurate data?</td>
<td>25</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Does the application help the school in determining specialization?</td>
<td>27</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Is the chosen specialization very important in choosing a college major?</td>
<td>23</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Can this application speed up and simplify school education?</td>
<td>28</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>125</td>
<td>15</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Information:
SP : Very satisfied
P : Satisfied
N : Neutral
T.P : Not satisfied
STP : Very Dissatisfied

The percentage can be done using a Likert Scale calculation as follows:

a. Respondents with the number of very satisfied answers (5) = 125
b. Respondents with the number of satisfied answers (4) = 15
c. Respondents with neutral answers (3) = 10
d. Respondents with the number of dissatisfied answers (2) = 0
e. Respondents with the number of very dissatisfied answers (1) = 0

The formula for calculating the Likert scale is

Calculating the Likert scale = T x Pn

Note: T = Total number of answers
 Pn = Choice of Likert score numbers

Calculating the Likert scale
= (125×5) + (15×4) + (10×3) + (0×2) + (0×1)
= 625 + 60 + 30 + 0 + 0
= 715

Percentage calculation = \(\frac{\text{Total skala likert}}{\text{Total skor maksimal}} \)
= \(\frac{715}{70} \)
= 0.95 (95%)

Based on the questionnaire percentage analysis shown in table 4.6 above, and by paying attention to the steps that have been explained, the conclusion is that the decision support system for selecting specializations for students at SMA Negeri 1 Pangkep using the Weighted Product method obtained a total percentage value of 95%. Therefore, this system can be implemented.

Conclusions and Suggestions

Conclusions

From the results of data analysis and design of a decision support system for selecting specializations for SMA Negeri 1 Pangkep students using the Weighted Product method, it can be concluded that:

1. The decision support system for selecting specializations for students at SMA Negeri 1 Pangkep using the Weighted Product method can be applied at the research site based on the results of the application test and questionnaire test results which are categorized as feasible based on the research success table.
2. The implementation results of this application show that this application runs well through functional testing and produces the expected output.

Suggestions

Based on the research results above, there are several suggestions for further system development to be better:

1. It is necessary to change the criteria so that the accuracy of decision making is more perfect.
2. To make it easier to access, this Decision Support System program can be developed into an Android-based application.
3. It is necessary to have security facilities to prevent disturbance or damage caused by irresponsible actions.
References

